Fault Diagnosis Using Genetic Algorithms and Principal Curves
نویسندگان
چکیده
Several applications of nonlinear principal component analysis (NPCA) have appeared recently in process monitoring and fault diagnosis. In this paper a new approach is proposed for fault detection based on principal curves and genetic algorithms. The principal curve is a generation of linear principal component (PCA) introduced by Hastie as a parametric curve passes satisfactorily through the middle of data. The existing principal curves algorithms employ the first component of the data as an initial estimation of principal curve. However the dependence on initial line leads to a lack of flexibility and the final curve is only satisfactory for specific problems. In this paper we extend this work in two ways. First, we propose a new method based on genetic algorithms to find the principal curve. Here, lines are fitted and connected to form polygonal lines (PL). Second, potential application of principal curves is discussed. An example is used to illustrate fault diagnosis of nonlinear process using the proposed approach.
منابع مشابه
FDMG: Fault detection method by using genetic algorithm in clustered wireless sensor networks
Wireless sensor networks (WSNs) consist of a large number of sensor nodes which are capable of sensing different environmental phenomena and sending the collected data to the base station or Sink. Since sensor nodes are made of cheap components and are deployed in remote and uncontrolled environments, they are prone to failure; thus, maintaining a network with its proper functions even when und...
متن کاملFault Diagnosis in a Yeast Fermentation Bioreactor by Genetic Fuzzy System
In this paper, the fuzzy system has been used for fault detection and diagnosis of a yeast fermentation bioreactor based on measurements corrupted by noise. In one case, parameters of membership functions are selected in a conventional manner. In another case, using certainty factors between normal and faulty conditions the optimal values of these parameters have been obtained through the g...
متن کاملUsing PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes
A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...
متن کاملFault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کاملAccuracy Improvement of Mood Disorders Prediction using a Combination of Data Mining and Meta-Heuristic Algorithms
Introduction: Since the delay or mistake in the diagnosis of mood disorders due to the similarity of their symptoms hinders effective treatment, this study aimed to accurately diagnose mood disorders including psychosis, autism, personality disorder, bipolar, depression, and schizophrenia, through modeling and analyzing patients' data. Method: Data collected in this applied developmental resear...
متن کامل